Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese journal of integrative medicine ; (12): 381-386, 2014.
Article in English | WPRIM | ID: wpr-262697

ABSTRACT

<p><b>OBJECTIVE</b>To explore the effects of Danshen Injection () on inhibition proliferation, inducing apoptosis and its possible mechanisms on human erythroid leukemic (HEL) cells.</p><p><b>METHODS</b>The commercial Chinese patent medicine of Danshen Injection was extracted and isolated from Chinese herb of Salvia miltiorrhiza bung. The inhibition effects of proliferation were assayed by 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) method in HEL cells treated by Danshen Injection at various concentrations for 48 h. The cellular apoptosis was observed in morphology, analyzed by flow cytometry with annexin V and propidium iodide (PI) staining, and examined by DNA degradation ladder on agarose gel electrophoresis. Meanwhile, the expression levels of mutant Janus kinasez (JAK2) gene and phosphorylation-JAK2 (P-JAK2) protein were detected by allele specific-polymerase chain reaction and Western blot.</p><p><b>RESULTS</b>The proliferation of HEL cells was effectively inhibited by Danshen Injection in a dose-dependent manner, with suppression rates from 19.46±2.31% to 50.20±5.21%. Typical apoptosis cells was observed in Danshen Injection treated HEL cells, the rates of annexin V positive cells increased obviously in a dose-dependent manner, as well as the DNA degradation ladder of apoptosis revealed on gel electrophoresis. The expression levels of mutant JAK2 gene and P-JAK2 protein reduced gradually with increasing dosage of Danshen injection.</p><p><b>CONCLUSION</b>Danshen Injection could not only significantly inhibit the proliferation, but also induce apoptosis in HEL cells; down-regulation of the mutant JAK2 gene and P-JAK2 protein expressions are probably one of its molecular mechanisms.</p>


Subject(s)
Humans , Apoptosis , Base Sequence , Cell Proliferation , DNA Primers , Down-Regulation , Janus Kinase 2 , Genetics , Metabolism , Leukemia, Erythroblastic, Acute , Metabolism , Pathology , Mutation , Phosphorylation , Plant Extracts , Pharmacology , Polymerase Chain Reaction , Salvia miltiorrhiza , Chemistry
SELECTION OF CITATIONS
SEARCH DETAIL